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SPATIAL INTERACTION OF STRONG DISCONTINUITIES IN A GAS* 

V.M. TESHUKOV 

The spatial problem of the interaction of curved fronts of strong dis- 
continuities during collision is examined for the system of gas-dynamic 
equations. In the case of regular interaction, an algorithm is indicated 
for the construction, andthe existence of a piecewise-analytic solution 
of the problem in an exact formulation is proved. The series governing 
the solution converge in a certain neighbourhood of a two-dimensional 
surface y. in the space R&(x, t), which is the intersection of surfaces of 
interacting discontinuities. It is shown #at the solution cannot be 
piecewise-analytic in the neighbourhood of those points of yc for which 
the normal velocity of the cuxve yet with respect to the gas (a section 
through ya by the plane t = const) is subsanic. 

so 
1. Formulation of the prclblem. For t SG [-- t,, tll (t is the time), let an analytic 

ution u = u, (% t), p = PO Ix, t)‘ p = p* (x* t) of the system sf gas-dynamics equations 

~1 + divpn=O, (PI), + div(pW + (VP+ =o 

(p(e+11~I~[2))~~di~pu(~+1/~Iu12)=0 (E=L2,3) 

(1.f) 

be known in the domain .sZ c R4 (x,t)(x = (xlrx2,xJ) E R3,tER) (u = (u,, uQ, uSf is the velocity 
vector, p is the density, p is the pressure, e is the specific internal energy, and i=E+p 
p-* is the specific enthalpy). The functions e = e(u, p), p = ~(v, s) (here v = p-1 and s is 
the entropy) that give the equation of state ofthemedium are analytic and satisfy the normal 
gas conditions /'l/. The fronts of two strong discontinuities propagate over the background 
"null", where the surfaces of discontinuity ricR4 (x,t) and the solutions behind the fronts 
u = uj (x, t), p = pJ (x, t), p = pJ (x, t) (j = 1, 2) are analytic- (The discontinuities axe concentrated 
on the hypersurfaces I*, in the space Rd(x,t). Sections rjt through these surfaces by the planes 

*Prikl.Matem.Sfekhan.,50,4,605-615,1906 



t = const correspond to the instantaneous positions of the fronts ofthediscontinuities). At 
the time t = 0 the fronts first touch at the point Q. It is required to describe the inter- 
action process for t>O if the motion of each of the discontinuities in the absence of 
another is known for t E i- t,, t,]. The problem is examined in this formulation for the inter- 
action of two shocks moving towards each other or for the incidence of a shock on a contact 
discontinuity. 

Remarks. lo. If for t=O the set I‘,,n r2,, contains its neighbourhood of r10 together 
with the point Q, then by virtue of analyticity rto and rlo should coincide for t=o. Then 
the problem arise regarding the decay of an arbitrary discontinuity on a curvilinear surface, 
as examined in /2/. We shall assume that Q is a single point of tangency of the fronts of 
interacting discontinuities for t>O (for t> 0 the tangent planes to the fronts do not 
coincide at points of intersection). 

2O. The method proposed for constructing the solution can be used almost without change 
in cases when the tangency of the fronts at the initial time occurs at several points at once, 
or over a certain closed or open Curve in P(x) when tangency holds for t>O also. In 
particular, motion with plane-parallel symmetry can be considered when the tangency of the 
fronts occurs over the rectilinear of cylindrical surfaces. 

2. Configuration of the singularities. The two-dimensional surface yr c R"(x) 
which the line of intersection yet = rlr n r2t describes as t grows, is determined by the motion 
of the given front rj,. Lety, have no selfintersections andletone instant t exist for each 
point XEY~ such that XEY,~. Let us give the surface y1 and the appropriate points I of 
the times t by the parametric equations x = x0(@, y), t = to@, y); here x0, t, are analytic 
functions of the parameters 6, y that have a difference in length, xef 0, x,+ 0, x6 x xovf 

If y1 is projected uniquely on the plane G% then the variables 

;; 1': 
&r J-3 can be taken as 

the functions x1,, (x21 x1), t,(z2,r3) are determined from the equations of the surfaces 1'1 
upon compliance witll the conditions of the theorem on implicit functions and (x&B* y) -- (Jnl (B? 
y),B,y)). We will consider this method of parametrization basic although further constructions 
are applicable for other parametrizations also. A two-dimensional surface y. = rr n l',CIR'(x, 
t) is given by the equations x = x0(@, y), t = to@, y). 

The shock, contact discontinuities, configurations and waves centered at Y0 /3/ are 
determined in the first stage of the construction of the solution. Relationships on the shocks 
and the centered waves, the contact discontinuity, and the conditions for passage of the 
surfaces of discontinuity through y. in the case of a regular interaction are used here. 

It is convenient to convert the Hugoniot relations on the shock front to a form containing 
the known vectors of the coordinate basis of the surface yo : 31 = he, sp, %p, QJ, 3, = hw Gyr hy’ 
tv) (the derivatives are calculated on y0 and the index 0 is omitted). To do this, we use 
the relationships /4/ 

xgn=tglf,, Xv” = tp, (2.1) 

where II is the normal to the shock front, and D,is the velocity of motion of the front in 
the normal direction. As a consequence of the relationships on the shock we obtain /4/ 

[a]=[bJ=O, a(v,~p)-E(uj,Pj)='/a(p-t Pj)(uj--v) (2.2) 
v*=D, -u,= v(p - pj)"*(vj- u)-~/~(~~=(uI~)) 

a = (uq) - tg (i + 2-I 1 u 12), b = (ux,.) - ty (i .-j- ‘/a 1 u I*) 

where If] means the jump in f during passage through the discontinuity. The quantities C%= 
(U3,), b = (U3,) are covariant components of the vector function U = (u,, uZ, u%,- (i + 'i, lul")) 
(on changing the parametrization @, Y by fi',Y' we obtain a', b’ which,are obtained from a, b by a 
tensor transformation law). The conservation of the projection of the above-mentioned vector- 
function on the tangent plane to y,, during passage through the discontinuity follows from (2.2). 

We define the concept of the normal velocity of the curve yol moving with time in R'(x). 
We consider the normal plane to YM at the point A EY~C . Let 3 be the point of intersection 
of $$(t+m and the normal plane. The vector N = l&AB (At)-r is called the normal velocity 

of yat at point A. The difference between the normal velocity of Y0f and the projection of 
the gas velocity vector on the normal plane is called the normal velocity of the curve of yet 
relative to the gas. A simple calculation shows that the normal velocity of y,,! agrees with 
the vector (lc x m )I k I-“, while the normal velocity with respect to the gas agrees with the 
vector w; w = (q x k) lk(+. Here k = tgx, - t,x, is a vector directed along the tangent to 
yat, m = XB x xv is a vector directed along the normal to yr, and q = m 4-k X u is a vector 
directed along the normal to the contact characteristic passing through y. /4/. 

We introduce cp,the angle between the vectors w and - N 

cos~-‘(q.m)IqI-'ImI-', sin~u)=IkI(um)lq1-'ImI-' (2.3) 

The relationship /4/ 



cp - ‘pj = +- arcsin +-$ 
(P - Pj)(uj _- u - ~:i’ I Pj I-* I k I* (P - P,)) “* 

‘-((P- Pj~~vj+U~IkI'I~jI~' 
I 

463 

(2.4) 

(here v - 'pj corresponds to the quantity 8 in /4/) is obtained for the angle of rotation of 
the vector w on passing through the discontinuity, and agrees formally with the equation of 
the shock polar in the plane of the variables, pressure-slope of the velocity vector considered 
in the theory of indirect compression shocks. (The absolute value of the normal velocity 
vector yOl with respect to the gas aheadofthe front corresponds to the absolute value of the 
free stream velocity vector and the subscript j refers to the state ahead of the front). 
Certain properties of the shock polar in a normal gas were studied in /5/. 

The relationship (2.4) holds even at the point Q, where tg = t, = 0 (tO (fi, y) reaches 
a minimum on y, at the point Q) and both sides of the equation vanish. But (2.4) can be written 
in the form 1 kll ml-1 @ (@, y) = 0, where @ is continuous in the neighbourhood of the point where 
tg = t, = 0, consequently, it follows from (2.4) that 0 = 0 on y0 (at points where Ikl#O it 
is possible to separate 1 k 1 I ml-’ into factors, and @ = 0 in continuity at the point Q). 

The equality @J = 0 is equivalent to the following 

Iml 1 k 1 (P - Pj)('j --u - ‘j’ I qj I* I k Is (P-Pj)) “1 
u - uj= *-arcsin - 

Iki lqj I 1 - (P - Pj)(uj + ‘) I k I’ I Pi I-’ 1 (2.5) 

where o=lmlIkl-lcp; as jkl-+D we have o=lml(kI-larcsin(Ikl(u.m) x ItI-*[ml-l). Here and in 

(2.5)) as tga+ttya+O 

Ikl-larcsinIklf=f+ 
c 

(21)! I k IV1 f"+l 
=1 221 (I!)'(21 + 1) 

Consequently (2.5) goes over into the following equation at the point Q 

U - Uj = _t (p - pi)"' (Uj - U)"* (24 

which is actually the equation of the (p, u&pattern of the shocks /l, 6/ (a = u, = (urn) 

I m 1-l for ta = tV = 0, n = m I m I-‘). For Ik I#0 the quantity u equals the arc length on 
a circle of radius Iml Jk 1-l (the absolute value of the normal velocity yol), shrunk by the 
angle cp taken with the sign sgncp. Exactly like the angle m_Cpj the quantity u - uj 

characterizes the rotation of the vector w during passage through a discontinuity, but it is 
more convenient for analysing the relationships onthe discontinuity since a+0 for tg = t, = 
0 unlike cp. 

It has been shown /3/ that the limit values on y0 of the fundamental quantities on both 
sides of the wave centered on y,, are connected by the equations 

Ial = lb1 = 0, [sl = 0, 10 f H (p, s, (I q I8 + 
2i I k I”) 1 m I-“)1 = 0 

(2.7) 

P 
[f, - 1 k I*) m I-* (2i + c’) (p’, s)]li* dp’ 

H(pp ‘* E)=ip(p’, s)c(p’, 8) (E-21 kl*lm 1-i (p’, 8)) ’ 
c2=- tig,(v, s) 

0 

(q corresponds here 
by the relationship 
to the front of the 
can be converted to 

to the vector v in /3/, and the quantity 8 in /3/ is connected with o 
8 = Iml-‘a). Using the fact that the vector q is directed along the normal 
contact discontinuity /4/, the relationships on the contact discontinuity 
the form 

Ipl = 0, IO1 = 0 (24 

If the normal to the wave front is directed towards the state ahead of the front, then as 
can be shown for (nq)> 0 the plus sign must be selected in (2.5) and the minus sign in (2.7) 
(the opposite for (nq)< 0). We call the waves turned to the right (to the left) if (ss) > 0 
((nn) < 0). 

The method of determining the configuration of the singularities on y0 is analogous to the 
T;th;$ of the (p, u)-pattern for solving problems about the decay of an arbitrary discontinuity 

. The (p, a)-patterns of transitions are examined at each point yO: for p>pj these 
cuives are given by (2.51, while for p <pj they are given by 

Of the two states 1 and 2, we call that gas state right towards which the vector q (co- 
incident with m at t = 0) is directed. A (p, u)-pattern of the transitions is constructed 
for each point of the surface y0 such that from the points (pj, u,) corresponding to the right 
state, a (p, u)-pattern of transitions turned to the right results, while from the points 
corresponding to the left state, a pattern of transitions turned to the left results. Gas 
states that can be related by a contact discontinuity (in conformity with (2.8)) correspond 
to the points of intersection of the (p,u)- patterns. 

We assume that the equations of state of the gas satisfy the condition 
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(p + %,i Ep + pa c< 0 (2.9) 
This inequality ensures that the "supersonic" portions of the (p, o)-patterns are monotonic, 

i.e., the a depends monotonically on p (on the supersonic portion I P I’ = 1% 1’ - (P - Pj) tcj + 
0) /k I”> jk 1’~‘). By virtue of the above-mentioned connection, the corresponding properties of 
the (p, o)-pattern are obtained from the properties of the shock polar studied in /S/. The 
configuration is defined uniquely at the point Q (by virtue of (2.9) the curves (2.6) are 
monotonic for all values of p and the point of intersection of the patterns is unique). The 
patterns drawn fromthepoints (Pj(p,Y),Uj(@,y)) (where the parameters r,fi correspond to points 
on y. that are close to Q) can have two or more points of intersection. (We show in Fig.1 
(p, a)-patterns corresponding to shock interaction in a polytropic gas ). From continuity 
considerations for the solution behind the shock front, the configuration of singularities is 
determined in this case by the point of intersection with minimum p (point 3 in Fiq.1). 

The appearance of other points of intersection is actually possible for the values pamin 

(Pl*, p2*:. where pj' are the coordinates of points on the p axis where the (~,a)-patterns have a 
vertical tangent. The values of p,* are determined from the equations 

I Pj Ia 
v = “j (P - Pj) 

‘j $ ’ - ” (P - pj) 

vj - ” - VI (p - Pj) 

where v= v(p, pj,uj) (by virtue of the equations of the Hugoniot adiabat, and Y'= dvfp, pi, Vj)fdP. 
The left side of the equality tends to infinity as /k l-0, and then pi*-& {Vj-V -V'(P-pl))#O 
by virtue of (2.9) (/5/). Therefore, the remaining points of intersection are fax from the 
point found (pa(Q), as(Q)) for small fB, ty. The values of (ps,us), connected in a continuous manner 
with (pJ(Q),o,(Q)), are defined uniquely in the neighbourhood w of the point 0 on yw The boundary 
of the neighbourhood 6.1 is determined by the tangency condition of the @,s)- patterns drawn 
at the corresponding points (pj(B,yb ej((B,y)) (the ambiguity in determining the configuration can 
occur during the merger of two roots, and this indeed corresponds to the boundary of 0). After 
having determined 0, p,u,a,b on %,the vector u is restored by the formulas presented in /4/ 
and 

u = 
i 
j q I/ m i-11 k I--1 sin (1 k 1 j m j%) m + 1 m I-* (aXy - 6x6) X m 4 (2.10) 

~q~2~k~-~sin’(~kf~m~-~o)+(nx,-bxg)*[m~-’Jr~~~ kXm 

1 + 1 q 1 I m 1-l cos (I k 11 m 1%) + (k, bxa - I+) I m I-* ’ Iml” I 
Different configurations of shock and centered waves occur depending on which poritions 

of the patterns intersect at point 3 (similar to the problem of the decay of an arbitrary 
discontinuity). The criteria presented in /2/ can be utilized in determining the kind of 
configuration, depending on the data of the problem about the point Q. 

Fig.1 

Fig.2 Fig.3 
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3. Configuration of two shocks. Let the data of the problem be such that for all 

(x9 t) E OlC m c yo the point of intersection of the (p, o)-patterns lies on branches correspond- 
ing to shocks. It is required to find the surfaces of the reflected shocks rr, r,, the contact 
discontinuity surface r,,and the solution of (1.1) in the domains Q,bounded by these surfaces. 

The pattern in the sections t = const corresponding to the given problem is displayed in 
Fig.2, and the pattern in the section z8 = const corresponding to the problem of flow with 
plane-parallel symmetry in Fig.3 (theflowcharacteristics are independent of z8, see Remark 2O). 

A change to the auxiliary variables r,a,p,v in the domains Szj is made in constructing 
the solution so that the unknown boundaries are fixed in the new variables (~,a have the 
dimensions of time, and fi,y the dimensions of length), then after the problem has been solved 
in the fixed domain, the possibility of transferring to the initial variables is then proved. 
Let the vector m be directed towards the state 1 for t = 0. The replacement of the variables 
is given by the relationships t = z + a $ to@, v), x = s (t, a, p, y)where the vector s (r, a, fi, y) 
is determined by solving the equations 

ya=lJ* un q* 
(I q* I2 - u,* I k* la)“* ’ Y la=0 =x0 tit Y) (3.1) 

~~=(urn)JqI-?q-_aIrnI-'IqI-'(k x q), (s-y)lTd=O 

u*=v(P - Pj)% (Vj - v)-‘1, 

Here V is a positive constant such that on y. 1 III <V, q, = (YB - tgu) x (yv - tvu), k, = tgyv - 
tvyp the plus sign corresponds to the domain Q, and the minus to the domain 9,. The normal 
to the shock front can be calculated in the form /4/ 

n= (k (I q \' - v,," I k la)"* q -t- v,,(k x q)) lq I-’ (3.2) 

Consequently xg = &D, for z = 0 and (x7 - n)q = 0 everywhere. This means that the 
plane r = 0 corresponds to the shock surface andtheplane a = const to the contact character- 
istics; in particular, I'b corresponds to a = 0 /4/. The Jacobian of the passage to the new 
variables for z = 0 is calculated in the form 

1 lrzO = (x, - x,) [m + k x x,] = F (v,, I q I2 J-‘) x (1 q I* - un2 ( k 12)-"* IT4 

and is different from zero on yO, at least, since the inequality J-l> l/2 holds for the 
quantities J-l = (pm) 1 q l-Z + v2 I k I2 I m 1-l ) q 1-l 

After introducing new variables in 9, the %, xv, tp,, t, are determined, and consequently 
the quantities ~,a, b can be introduced in 8, by the same formulas as inSect.2.For r = 0 the 
relationships (2.1) are satisfied since the vectors 3, = (r,~, ~26, s3~,@,32 = (z~v,~~v,xs~,~V) lie 
in the tangent plane to the shock surface. It can be shown by utilizing (2.1) that the 
boundary conditions on the shock front can be written in the form (2.2), (2.5) (as in Sect.2. 

System (1.1) is converted to new variables in the domain Q!, 

a,=e1vg + ezvy f es, b,~:~v~ + esvv + e8, s, = e7sp + ess, 

dhs = h, + ePv6 + elOvv + % (4~ + cl% WV + e13 

(3.3) 

II= u ; 0 ii?= (c-z-1 qj+l kl*) Jlmlp-' 

P (bq) 

Here v is the notation of the vector solution whose components are the quantities a, b, s, 
0, P* se, ZJV, 5J (i = 1, . . ., 3); eJ are scalar, vector, and matrix functions of the variables v, %, 

07 Y and 5 = I-‘(m 4-k X ~0). The derivatives h, b, are not in system (3.3); the selection 
of a, b as the desired functions is explained by this circumstance and the simplicity of the 
boundary conditions (2.2). In the domain 61, the system of equations has a form analogous to 
(3.3), taking the changes when determining the change of variables into account. The desired 
functions and the coefficients of the equations in Cl, will be denoted by corresponding capital 
letters: A, B, S, 2, . . ., EJ,D. The question of the existence of a SOhtiOn of the problem will 
be solved by constructing a Taylor series for the solution in the neighbourhood of the points 

q and proving their convergence. 
We will show that the equations and boundary conditions permit a unique determination of 

all the derivatives of the solution at an arbitrary point of a certain subdomain of 01. To 
this end, we transform the boundary conditions of the form (2.5) by extracting the linear 
part in a and p at the point NE w1 C y. 

= h (p, PI, VI* olr I k Ia, I w It I m I) 

= Fl (P, pa, h, (~2, I ii Ia, I i3 I9 Im II 

A=(l, A)=(1 (g)N) 



The last equations of system (3.3) are written in the form 

&k,=k, -t cp, Dj.JB,=H, tdD (3.3) 

(ds = (d)N,& = (D), in cp and Q, are referred to the remaining terms of the equations; this 
transformation separates the principal part in the derivatives hr, 11, at the point N). 

In clarifying the question of the solvability of differentiated equations and boundary 
conditions with respect to the derivatives of the desired functions in the variables z and 
a the relationships (3.4) and (3.5) play an important part in connected with the fact that 
the boundary conditions for (J and p are given for z = 0 and a = 0. We will write the 
differential consequences (3.5) in the special form 

(3.6) 

After multiplying the first and third equations by the vectors ?U and A, respectively, 
and utilizing the equation ho,,,== H,, which holds for a = 0 by virtue of (2.61, we obtain 
a system of two equations to determine the derivatives Hj,n_j on y. in terms of derivatives 
of lesser overall order in the variables a and z 

Eqs.(3.7) are solvable in the case of linear independence of the vectors LdN” and hDN" 
for each natural R. On satisfying the solvability conditions for (3.7), the derivatives of 
the remaining functions are determined fairly simply from the remaining equations of the 
system and the boundary conditions. It is here convenient to write the third boundary 
condition of (2.2) in the following form, solved for s, s: 

s = f, (P+ ~1, u,), S = Fa V'. PI+ vx) 

Lemma. The solvability condition for (3.7) is satisfied at points of the set %C 01 

characterized by the following property: the normal velocity yet relative to the gas behind 
reflected shocks is greater than the local velocity of sound (Iql >(kl c for x, tE oc). 

Proof. We reduce the matrices d, and D, to diagonal form 

dN = tT%llX, D, = x-‘L),x 

d, = diag (Ye, v,), D, = diag (A',, NJ 

(3.8) 

2 = (I m IP-'1~ I" (Is iQ-' - il k I*)"VN, es, 

2 = (I m I P-' I q Id (In Wr - I k l’+),v, p, 

Here tlv,c, denotes limit values from the domains Gi for the quantity f at the point N. 
By using these formulas the solvability condition can be represented in the form 

(N,N.&v;~)~ - .+N1 (YIY;ljn- alh, pv,x;l)” - alA, + 0, n = 1, 2, . . . (3.9) 
A, = (A - Z) (A + zp, a, = (h “j- 2) (2 - A)_‘, N, = - h, = (a - Z) X(2 + a-1 
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By virtue of the Zemplen theorem /6f v,,]<c behind the shock, consequently, v,> v,> 0, 
N,>N,>O for Isl>lklc. It follows from (2.9) that h>0,1<0 (the monotonicity of the 
(p, o)-pattern), and then IolI<i, I-%l<~, IH,l<f. Therefore, the left-hand side of (3.9) grows 
as n increases, but is positive for n=O: l- AIH,-a&l-~A,>O. The lemma is proved. 

We will show that condition (3.9) is not satisfied in the general case at those points 
x,ter~,, whexe the normal velocity yet with respect to the gas is less than the velocity of sound 
on at leastone side of the contact discontinuity I'&. If this holds in P,, then vl.vl are 
complex conjugate quantities and 2 is purely imaginaF1. We set vlvI-l = c'*, HI = cirp, Q, = P then 
(3.9) is converted to the form 

For fixed n equality is achieved here for rpx.9)kr& satisfying the relationships E&=0 (k= 
0, i, . . ., II - l), where 

Let $((B,v) vary between ~~---a~ and $,+e,astheparameters p,v(p) varyalongacertainpath 
(b E I$,, - a,, B. + .a& ai >O, i = 1, 2. 3) and for integer p, qt p < q, $,,, = 2nplq E I$, - E~,$~ + e,l. Then for k = 
p,n=qr and sufficiently large s we have ERt(BG-er)<O,~~(f(Bofes)>O. By continuity, the &,& 
vanish at intermediate points of the path mentioned. Therefore, in the "subsonic" case the 
problem has no piecewise-analytic solution for general data. 

In the "supersonic" case, all the derivatives of the solution can be found uniquely on 

Yo at an arbitrary point New0 according to the lemma, and a formal representation of the 
solution can be written down in the form of Taylor series. Convergence of the series is proved 
by constructing a majorant in the neighbourhood of the point N. The linear changes of variables 

2 
r= 0 I 

=xh, R=(;)=XH 
reduce the matrices+and DN in 13.5) to diagonal form 

dir, = ra + 9, D&=R,+v 

+=(_~)=qz, Y-(_&o 
&ii) 

The boundary conditions are reduced to homogeneous conditions by standard substitutions 
(we retain the notation of the quantities after the substitution). Then for t-=0 and a=0 

(3.12) 

The solution of the transformed Eqs(3.7) is written down explicitly 

The formulas for the derivatives rj n_jrEjS,_j are analogous in form and can be obtained 

from (3.13) by a formal replacement of the lower-case letters by upper case and conversely. 
The formulas presented show that the derivatives being determined will increase as the 

coefficients of the derivatives *i,Yi increase, and by the replacement of @,Vi by their 
majorizing functions. Taking this fact into account, a problem is constructed to determine 
the majorant: the Al, al, iSI, h, K, in the boundary conditions (3.12) are replaced by their 
absolute values, while kl is replaced by k,= IalA&(“l(l-_IalhlI) (1- IA,H,I). If such substitutions 
are made in the expression for A,,. then the inequality Aa>Ah,,>O is satisfied for the quantity 
AM obtained in the result. 

The inequalities 
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hold for the coefficients b, and C, in (3.13) 
Consequently, if the equations to determine the majorants of r,l, R,L are taken in the 

form of (3.11), by replacing Y, and Yy, by Mz$,,nrMnYim (where Yim.Yim are the majorants of 
~i,YY,,~~*~max(Ik,I)(k,', Al,)). then the derivatives of the majorants that are being determined 

successively will not be less than the absolute values of the derivatives of the solution. 

The systems of coefficients for the derivatives in the remaining equations are replaced by 

their majorants (Eqs.(3.1) reduce to quasilinear by using differentiation). 

The majorants of Yim, Y,,, canbe selected so that the following relationships are satisfied 

(3.14) 

This is achieved by selecting the common majorants of all Yi.Yu, multiplied by a 

sufficiently large numerical coefficient as YZ"Z. 
Relations (3.14) enable us to seek a particular solution of the majorant problem that 

satisfies the relationships 

L = 1 A, 1 R, 2 = 1 al I T, R = 1 H, ( I. + k,Z, r = 1 h, 1 2 j- 1 K, 1 L 

According to the well-known properties of analytic functions, majorants of the coefficients 

for the derivatives in the equations can be selected so that the independent variables will 

enter in the form of a linear combination E(z+ ~a)$ b- fiH+y-yN = 9, E>, 1. This enables us to 

seek the particular solution of the majorant problem in the class of functions dependent only 

on q. The system of ordinary differential equations obtained is reduced to normal form by 

an appropriate selection of the parameter e. The existence of an analytic solution of the 

Cauchy problem with homogeneous data for q= 0 for a system of ordinary differential equations 

follows from the Cauchy-Kovalevskaya theorem. Convergence of the series governing the solution 

as a function ofthe auxiliary variables ~,a,o,v is thereby proved. If the coefficients A, 

or nl vanish, small changes occur in the proof (see Sect.4). 

4. Configurations of a shock and centred wave. Let the intersection of the 

(p, u)-pattern determine the configuration of a shock and centred wave on yO. In conformity 

with Sect.2, the amplitude of the centred wave (CW) on y0 is known, hence, the CW adjoining 

the given solution is found independently /3/. The problem of constructing the solution in 

a domain bounded by a closing characteristic of the CW and the contact discontinuity as well 

as in a domain bounded by the shock surface and the contact discontinuity differs from that 

considered above by the fact that conditions of continuous abutment to the CW should be 

satisfied on r4 which is a sonic characteristic. The remaining boundary conditions do not 

change. New variables can be introduced in the domain !>,, bounded by rr and rB by using (3.1) 

in which we put v,= c. 

After the change of variables, (1.1) take a form analogous to (3.3), here 

D_ (“l-%c)P @I) I (1 - cp 1 k 12 1 q 1-2) p-WV ( 1111 

Iq I2 P I q 12 J I m I-1 (64) I 
(in the notation of the fundamental quantities in the domain & the lower-case letters have 

been replaced by upper case). On the boundary 7 = 0, the A, B, S, X +H are given as 

functions of the variables a,fl,y. By analogy with (3.4) it is convenient to write this last 

condition in the form 

= Fl (P, a, BY Y) IT=0 z=ll (4.1) 

Taking account of the formal similarity betweentheproblem obtained and the problem 

examined in Sect.3, further construction of the solution is carried out by the same scheme. 

The specific features of the problem are associated with the fact that the surface rr is a 

characteristic, consequently, the matrix D is degenerate, its eigenvalue is N, = 0. Moreover, 
A, = 0. Consequently, the condition for the continued equations in the derivatives to be 
solvable has the following form here: 

(v0?)"- U,Al# 0, n=l,2,... 

This condition is satisfied in the supersonic case and the general case and is not 

satisfied in the subsonic case. A representation of the solution in the form of Taylor series 

can be written down whenthe solvability condition is satisfied. 
A certain distinction from Sect.3 occurs in the proof of the series convergence in that 

A, = 0. The vector R is introduced by the same formulas as in Sect.3. After conversion of 
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the boundary conditions to homogeneous conditions, Eq.(4.1) goes over into L=O for r= 0. 
In the majorant problem the coefficients al, A,,h,,H,,k,,K, of the boundary conditions (3.12) are 
replaced by their absolute values. For an appropriate selection of the majorants $imYim for 
the analogues of (3.11)) the particular solution of the majorant problem satisfies the relation- 
ships 

IK,I “lK1’ L, ‘= f-_lqh,I 
I ~241 I 

= 1 - (all&* 1 L, R =(IHd+ i _,alhl, )L 

everywhere in the domain of definition. The existence of a piecewise-analytic solution is 
thus proved for the shock and centred wave configurations in the case when the normal velocity 

%r relative to the gas behind the shock is greater than the velocity of sound (the mentioned 
velocity is always subsonic inthedomain behind the CW). 

It is necessary to reverse the replacement of the dependent and independent variables to 
prove the existence of analytic solutions of system (1.1) describing the interaction of strong 
discontinuities. The vector u is restored by using relations of the type (2.10). The local 
reversal of the changeofvariables t= t+a+ to@, 7). I= x.(t, a, t3, v) is possible because of the 
non-degeneracy of the appropriate Jacobians. Proof of the existence in the space R4(r,t) of 
a neighbourhood of the set oe possessing the same property, as the mapping X, t - (5 % B> u) 
univalent by in the mentioned neigbbourhood is analogous tc the proof of the corresponding 
facts in /3, 4/. Hence, we have proved the following theorem. 

Theorem. A piecewise-analytic solution of (1.1) exists describing the interaction of 
strong discontinuities defined in a certain neighbourhood of the set o, in R4(x, t). 

The solution constructed describes the gas flow, the shock fronts, the contact discon- 
tinuities, and the CW in the neighbourhood of the lines of intersection of interacting fronts 

YOl moving in RS(x). In the initial period of the interaction the normal velocity Y,,, relative 
to the gas behind the reflected waves is greater than the velocity of sound (Iw I+ 00 in the 
neighbourhood of the point Q as tg2 + ty*-> 0). As has been proved, the analyticity of the 
solution is conserved here for analytic data. The solvability conditions oftheproblem are 
not satisfied in the class of analytic functions for a subsonic normal velocity vol. This 
means the appearance of singularities in the solution. Transfer to a non-regular interaction 
of discontinuities is possible at a later stage. Study of the transition process requires 
additional examination. 
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